Unbounded Critical Points for a Class of Lower Semicontinuous Functionals

نویسندگان

  • BENEDETTA PELLACCI
  • MARCO SQUASSINA
چکیده

In this paper we prove existence and multiplicity results of unbounded critical points for a general class of weakly lower semicontinuous functionals. We will apply a nonsmooth critical point theory developed in [10, 12, 13] and applied in [8, 9, 20] to treat the case of continuous functionals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple critical points for non-differentiable parametrized functionals and applications to differential inclusions

In this paper we deal with a class of non-differentiable functionals defined on a real reflexive Banach space X and depending on a real parameter of the form Eλ(u) = L(u)− (J1 ◦T )(u)−λ(J2 ◦ S)(u), where L : X → R is a sequentially weakly lower semicontinuous C functional, J1 : Y → R, J2 : Z → R (Y, Z Banach spaces) are two locally Lipschitz functionals, T : X → Y , S : X → Z are linear and com...

متن کامل

On a class of systems of n Neumann two-point boundary value Sturm-Liouville type equations

Employing a three critical points theorem, we prove the existence ofmultiple solutions for a class of Neumann two-point boundary valueSturm-Liouville type equations. Using a local minimum theorem fordifferentiable functionals the existence of at least one non-trivialsolution is also ensured.

متن کامل

Variational Approximation of Functionals withCurvatures and Related

We consider the problem of approximating via ?-convergence a class of functionals depending on curvatures of smooth compact boundaries. We investigate the connections between the approximation problem and the lower semicontinuous envelope of the original functional. We provide some examples of lower semicontinuous functionals and their variational approximation.

متن کامل

Continuous essential selections and integral functionals

Given a strictly positive measure, we characterize inner semicontinuous solid convex-valued mappings for which continuous functions which are selections almost everywhere are selections. This class contains continuous mappings as well as fully lower semicontinuous closed convex-valued mappings that arise in variational analysis and optimization of integral functionals. The characterization allo...

متن کامل

A nonsmooth principle of symmetric criticality and variational – hemivariational inequalities ✩

In this paper we prove the principle of symmetric criticality for Motreanu–Panagiotopoulos type functionals, i.e., for convex, proper, lower semicontinuous functionals which are perturbed by a locally Lipschitz function. By means of this principle a variational–hemivariational inequality is studied on certain type of unbounded strips. © 2006 Elsevier Inc. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003